# Job Wrapper v2 Plan ## Required Reading Before implementing this plan, engineers should thoroughly understand these design documents: - **[DESIGN.md](../DESIGN.md)** - Overall DataBuild architecture and job execution model - **[design/core-build.md](../design/core-build.md)** - Core build semantics and job lifecycle state machines - **[design/observability.md](../design/observability.md)** - Observability strategy and telemetry requirements - **[design/build-event-log.md](../design/build-event-log.md)** - Event sourcing model and BEL integration - **[databuild.proto](../databuild/databuild.proto)** - System interfaces and data structures ## Overview The job wrapper is a critical component that mediates between DataBuild graphs and job executables, providing observability, error handling, and state management. This plan describes the next generation job wrapper implementation in Rust. ## Architecture ### Core Design Principles 1. **Single Communication Channel**: Jobs communicate with graphs exclusively through structured logs 2. **Platform Agnostic**: Works identically across local, Docker, K8s, and cloud platforms 3. **Zero Network Requirements**: Jobs don't need to connect to any services 4. **Fail-Safe**: Graceful handling of job crashes and fast completions ### Communication Model ``` Graph → Job: Launch with JobConfig (via CLI args/env) Job → Graph: Structured logs (stdout) Graph: Tails logs and interprets into metrics, events, and manifests ``` ## Structured Log Protocol ### Message Format (Protobuf) ```proto message JobLogEntry { string timestamp = 1; string job_id = 2; string partition_ref = 3; uint64 sequence_number = 4; // Monotonic sequence starting from 1 oneof content { LogMessage log = 5; MetricPoint metric = 6; JobEvent event = 7; PartitionManifest manifest = 8; } } message LogMessage { enum LogLevel { DEBUG = 0; INFO = 1; WARN = 2; ERROR = 3; } LogLevel level = 1; string message = 2; map fields = 3; } message MetricPoint { string name = 1; double value = 2; map labels = 3; string unit = 4; } message JobEvent { string event_type = 1; // "task_launched", "heartbeat", "task_completed", etc google.protobuf.Any details = 2; map metadata = 3; } ``` ### Log Stream Lifecycle 1. Wrapper emits `job_config_started` event (sequence #1) 2. Wrapper validates configuration 3. Wrapper emits `task_launched` event (sequence #2) 4. Job executes, wrapper captures stdout/stderr (sequence #3+) 5. Wrapper emits periodic `heartbeat` events (every 30s) 6. Wrapper detects job completion 7. Wrapper emits `PartitionManifest` message (final required message with highest sequence number) 8. Wrapper exits The PartitionManifest serves as the implicit end-of-logs marker - the graph knows processing is complete when it sees this message. Sequence numbers enable the graph to detect missing or out-of-order messages and ensure reliable telemetry collection. ## Wrapper Implementation ### Interfaces ```rust trait JobWrapper { // Config mode - accepts PartitionRef objects fn config(outputs: Vec) -> Result; // Exec mode - accepts serialized JobConfig fn exec(config: JobConfig) -> Result<()>; } ``` ### Exit Code Standards Following POSIX conventions and avoiding collisions with standard exit codes: Reference: - https://manpages.ubuntu.com/manpages/noble/man3/sysexits.h.3head.html - https://tldp.org/LDP/abs/html/exitcodes.html ```rust // Standard POSIX codes we respect: // 0 - Success // 1 - General error // 2 - Misuse of shell builtin // 64 - Command line usage error (EX_USAGE) // 65 - Data format error (EX_DATAERR) // 66 - Cannot open input (EX_NOINPUT) // 69 - Service unavailable (EX_UNAVAILABLE) // 70 - Internal software error (EX_SOFTWARE) // 71 - System error (EX_OSERR) // 73 - Can't create output file (EX_CANTCREAT) // 74 - Input/output error (EX_IOERR) // 75 - Temp failure; retry (EX_TEMPFAIL) // 77 - Permission denied (EX_NOPERM) // 78 - Configuration error (EX_CONFIG) // DataBuild-specific codes (100+ to avoid collisions): // 100-109 - User-defined permanent failures // 110-119 - User-defined transient failures // 120-129 - User-defined resource failures // 130+ - Other user-defined codes enum ExitCodeCategory { Success, // 0 StandardError, // 1-63 (shell/system) PosixError, // 64-78 (sysexits.h) TransientFailure, // 75 (EX_TEMPFAIL) or 110-119 UserDefined, // 100+ } ``` ## Platform-Specific Log Handling ### Local Execution - Graph spawns wrapper process - Graph reads from stdout pipe directly - PartitionManifest indicates completion ### Docker - Graph runs `docker run` with wrapper as entrypoint - Graph uses `docker logs -f` to tail output - Logs persist after container exit ### Kubernetes - Job pods use wrapper as container entrypoint - Graph tails logs via K8s API - Configure `terminationGracePeriodSeconds` for log retention ### Cloud Run / Lambda - Wrapper logs to platform logging service - Graph queries logs via platform API - Natural buffering and persistence ## Observability Features ### Metrics Collection For metrics, we'll use a simplified StatsD-like format in our structured logs, which the graph can aggregate and expose via Prometheus format: ```json { "timestamp": "2025-01-27T10:30:45Z", "content": { "metric": { "name": "rows_processed", "value": 1500000, "labels": { "partition": "date=2025-01-27", "stage": "transform" }, "unit": "count" } } } ``` The graph component will: - Aggregate metrics from job logs - Expose them in Prometheus format for scraping (when running as a service) - Store summary metrics in the BEL for historical analysis For CLI-invoked builds, metrics are still captured in the BEL but not exposed for scraping (which is acceptable since these are typically one-off runs). ### Heartbeating Fixed 30-second heartbeat interval (based on Kubernetes best practices): ```json { "timestamp": "2025-01-27T10:30:45Z", "content": { "event": { "event_type": "heartbeat", "metadata": { "memory_usage_mb": "1024", "cpu_usage_percent": "85.2" } } } } ``` ### Log Bandwidth Limits To prevent log flooding: - Maximum log rate: 1000 messages/second - Maximum message size: 1MB - If limits exceeded: Wrapper emits rate limit warning and drops messages - Final metrics show dropped message count ## Testing Strategy ### Unit Tests - Log parsing and serialization - Exit code categorization - Rate limiting behavior - State machine transitions ### Integration Tests - Full job execution lifecycle - Platform-specific log tailing - Fast job completion handling - Large log volume handling ### Platform Tests - Local process execution - Docker container runs - Kubernetes job pods - Cloud Run invocations ### Failure Scenario Tests - Job crashes (SIGSEGV, SIGKILL) - Wrapper crashes - Log tailing interruptions - Platform-specific failures ## Implementation Phases ### Phase 0: Minimal Bootstrap Implement the absolute minimum to unblock development and testing: - Basic wrapper that only handles happy path - Support for local execution only - Minimal log parsing in graph - Integration with existing example jobs This phase delivers a working end-to-end system that can be continuously evolved. ### Phase 1: Core Protocol - Define protobuf schemas - Implement structured logger - Add error handling and exit codes - Implement heartbeating - Graph-side log parser improvements ### Phase 2: Platform Support - Docker integration - Kubernetes support - Cloud platform adapters - Platform-specific testing ### Phase 3: Production Hardening - Rate limiting - Error recovery - Performance optimization - Monitoring integration ### Phase 4: Advanced Features - In-process config for library jobs - Custom metrics backends - Advanced failure analysis ## Success Criteria 1. **Zero Network Dependencies**: Jobs run without any network access 2. **Platform Parity**: Identical behavior across all execution platforms 3. **Minimal Overhead**: < 100ms wrapper overhead for config, < 1s for exec 4. **Complete Observability**: All job state changes captured in logs 5. **Graceful Failures**: No log data loss even in crash scenarios ## Next Steps 1. Implement minimal bootstrap wrapper 2. Test with existing example jobs 3. Iterate on log format based on real usage 4. Gradually add features per implementation phases