#!/usr/bin/env python3 import sys import json import os import duckdb from datetime import datetime from pathlib import Path from typing import List, Dict, Any import re def main(): if len(sys.argv) < 2: print("Usage: categorize_reviews_job.py {config|exec} [args...]", file=sys.stderr) sys.exit(1) command = sys.argv[1] if command == "config": handle_config(sys.argv[2:]) elif command == "exec": handle_exec(sys.argv[2:]) else: print(f"Unknown command: {command}", file=sys.stderr) sys.exit(1) def parse_partition_ref(partition_ref: str) -> Dict[str, str]: """Parse partition ref like 'categorized_reviews/category=comedy/date=2020-01-01' into components.""" match = re.match(r'categorized_reviews/category=([^/]+)/date=(\d{4}-\d{2}-\d{2})', partition_ref) if not match: raise ValueError(f"Invalid partition ref format: {partition_ref}") return {"category": match.group(1), "date": match.group(2)} def handle_config(args): if len(args) < 1: print("Config mode requires partition ref", file=sys.stderr) sys.exit(1) partition_ref = args[0] try: parsed = parse_partition_ref(partition_ref) category = parsed["category"] date_str = parsed["date"] except ValueError as e: print(f"Error parsing partition ref: {e}", file=sys.stderr) sys.exit(1) # Dependencies: reviews for the date and podcast metadata reviews_ref = f"reviews/date={date_str}" podcasts_ref = "podcasts/all" config = { "configs": [{ "outputs": [{"str": partition_ref}], "inputs": [ {"dep_type": 1, "partition_ref": {"str": reviews_ref}}, {"dep_type": 1, "partition_ref": {"str": podcasts_ref}} ], "args": [category, date_str], "env": { "PARTITION_REF": partition_ref, "TARGET_CATEGORY": category, "TARGET_DATE": date_str } }] } print(json.dumps(config)) def handle_exec(args): if len(args) < 2: print("Exec mode requires category and date arguments", file=sys.stderr) sys.exit(1) target_category = args[0] target_date = args[1] partition_ref = os.getenv('PARTITION_REF', f'categorized_reviews/category={target_category}/date={target_date}') # Input paths reviews_file = f"/tmp/databuild_test/examples/podcast_reviews/reviews/date={target_date}/reviews.parquet" podcasts_file = "/tmp/databuild_test/examples/podcast_reviews/podcasts/podcasts.parquet" # Check input files exist if not os.path.exists(reviews_file): print(f"Reviews file not found: {reviews_file}", file=sys.stderr) sys.exit(1) if not os.path.exists(podcasts_file): print(f"Podcasts file not found: {podcasts_file}", file=sys.stderr) sys.exit(1) # Output path output_dir = Path(f"/tmp/databuild_test/examples/podcast_reviews/categorized_reviews/category={target_category}/date={target_date}") output_dir.mkdir(parents=True, exist_ok=True) output_file = output_dir / "categorized_reviews.parquet" try: # Categorize reviews by joining with podcast metadata categorize_reviews_for_category_date(reviews_file, podcasts_file, target_category, str(output_file)) print(f"Successfully categorized reviews for category {target_category} on {target_date}") print(f"Output written to: {output_file}") # Create manifest manifest = { "outputs": [{"str": partition_ref}], "inputs": [ {"str": f"reviews/date={target_date}"}, {"str": "podcasts/all"} ], "start_time": datetime.now().isoformat(), "end_time": datetime.now().isoformat(), "task": { "job": {"label": "//examples/podcast_reviews:categorize_reviews_job"}, "config": { "outputs": [{"str": partition_ref}], "inputs": [ {"dep_type": 1, "partition_ref": {"str": f"reviews/date={target_date}"}}, {"dep_type": 1, "partition_ref": {"str": "podcasts/all"}} ], "args": [target_category, target_date], "env": {"PARTITION_REF": partition_ref, "TARGET_CATEGORY": target_category, "TARGET_DATE": target_date} } } } manifest_file = output_dir / "manifest.json" with open(manifest_file, 'w') as f: json.dump(manifest, f, indent=2) except Exception as e: print(f"Error categorizing reviews: {e}", file=sys.stderr) sys.exit(1) def categorize_reviews_for_category_date(reviews_file: str, podcasts_file: str, target_category: str, output_file: str): """Join reviews with podcast categories and filter for target category.""" # Connect to DuckDB for processing duckdb_conn = duckdb.connect() try: # Try to install and load parquet extension, but don't fail if it's already installed try: duckdb_conn.execute("INSTALL parquet") except Exception: pass # Extension might already be installed duckdb_conn.execute("LOAD parquet") # Query to join reviews with podcasts and filter by category query = f""" SELECT r.podcast_id, r.review_title, r.content, r.rating, r.author_id, r.created_at, r.review_date, p.title as podcast_title, p.primary_category, p.all_categories, '{target_category}' as target_category FROM parquet_scan('{reviews_file}') r JOIN parquet_scan('{podcasts_file}') p ON r.podcast_id = p.podcast_id WHERE p.primary_category = '{target_category}' OR p.all_categories LIKE '%{target_category}%' ORDER BY r.created_at """ # Execute query and save to parquet duckdb_conn.execute(f"COPY ({query}) TO '{output_file}' (FORMAT PARQUET)") # Get row count for logging count_result = duckdb_conn.execute(f"SELECT COUNT(*) FROM ({query})").fetchone() row_count = count_result[0] if count_result else 0 print(f"Categorized {row_count} reviews for category '{target_category}'") if row_count == 0: print(f"Warning: No reviews found for category '{target_category}' on date '{reviews_file.split('date=')[1].split('/')[0]}'") finally: duckdb_conn.close() if __name__ == "__main__": main()