# Podcast Reviews Example This is an example data application where we produce text insights from podcast review data. It is made up of N datasets: - Raw reviews `(date, podcast, text, rating)` - Podcasts `(podcast, title, category)` - Categorized review text `(date, category, podcast, text)` - Phrase models `(date, category, hash, ngram, score)` - Podcast phrase stats `(date, category, podcast, ngram, count, rating)` - Podcast daily summary `(date, category, podcast, phrase_stats, recent_reviews)` ```mermaid flowchart LR raw_reviews[(Raw Reviews)] & podcasts[(Podcasts)] --> categorize_text --> categorized_texts[(Categorized Texts)] categorized_texts --> phrase[Phrase Modeling] --> phrase_models[(Phrase Models)] phrase_models & raw_reviews --> phrase_stats --> podcast_phrase_stats[(Podcast Phrase Stats)] podcast_phrase_stats & raw_reviews --> calc_summary --> podcast_daily_summary[(Podcast Daily Summary)] ``` ## Input Data Get it from [here](https://www.kaggle.com/datasets/thoughtvector/podcastreviews/versions/28?select=database.sqlite)! (and put it in `examples/podcast_reviews/data/ingest/database.sqlite`)