265 lines
No EOL
9.9 KiB
Python
265 lines
No EOL
9.9 KiB
Python
#!/usr/bin/env python3
|
|
|
|
import sys
|
|
import json
|
|
import os
|
|
import duckdb
|
|
from datetime import datetime
|
|
from pathlib import Path
|
|
from typing import List, Dict, Any
|
|
import re
|
|
|
|
def main():
|
|
if len(sys.argv) < 2:
|
|
print("Usage: phrase_stats_job.py {config|exec} [args...]", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
command = sys.argv[1]
|
|
|
|
if command == "config":
|
|
handle_config(sys.argv[2:])
|
|
elif command == "exec":
|
|
handle_exec(sys.argv[2:])
|
|
else:
|
|
print(f"Unknown command: {command}", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
def parse_partition_ref(partition_ref: str) -> Dict[str, str]:
|
|
"""Parse partition ref like 'phrase_stats/category=comedy/date=2020-01-01' into components."""
|
|
match = re.match(r'phrase_stats/category=([^/]+)/date=(\d{4}-\d{2}-\d{2})', partition_ref)
|
|
if not match:
|
|
raise ValueError(f"Invalid partition ref format: {partition_ref}")
|
|
return {"category": match.group(1), "date": match.group(2)}
|
|
|
|
def handle_config(args):
|
|
if len(args) < 1:
|
|
print("Config mode requires partition ref", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
configs = []
|
|
|
|
# Process each partition reference
|
|
for partition_ref in args:
|
|
try:
|
|
parsed = parse_partition_ref(partition_ref)
|
|
category = parsed["category"]
|
|
date_str = parsed["date"]
|
|
except ValueError as e:
|
|
print(f"Error parsing partition ref: {e}", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
# Dependencies: phrase models and categorized reviews for the category and date
|
|
phrase_models_ref = f"phrase_models/category={category}/date={date_str}"
|
|
categorized_reviews_ref = f"categorized_reviews/category={category}/date={date_str}"
|
|
|
|
configs.append({
|
|
"outputs": [{"str": partition_ref}],
|
|
"inputs": [
|
|
{"dep_type_code": 1, "dep_type_name": "materialize", "partition_ref": {"str": phrase_models_ref}},
|
|
{"dep_type_code": 1, "dep_type_name": "materialize", "partition_ref": {"str": categorized_reviews_ref}}
|
|
],
|
|
"args": [category, date_str],
|
|
"env": {
|
|
"PARTITION_REF": partition_ref,
|
|
"TARGET_CATEGORY": category,
|
|
"TARGET_DATE": date_str
|
|
}
|
|
})
|
|
|
|
config = {"configs": configs}
|
|
print(json.dumps(config))
|
|
|
|
def handle_exec(args):
|
|
import time, random, os; time.sleep(float(os.getenv('EXEC_SLEEP', '0')) * random.random())
|
|
|
|
if len(args) < 2:
|
|
print("Exec mode requires category and date arguments", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
target_category = args[0]
|
|
target_date = args[1]
|
|
partition_ref = os.getenv('PARTITION_REF', f'phrase_stats/category={target_category}/date={target_date}')
|
|
|
|
# Input paths
|
|
phrase_models_file = f"/tmp/databuild_test/examples/podcast_reviews/phrase_models/category={target_category}/date={target_date}/phrase_models.parquet"
|
|
categorized_reviews_file = f"/tmp/databuild_test/examples/podcast_reviews/categorized_reviews/category={target_category}/date={target_date}/categorized_reviews.parquet"
|
|
|
|
# Check input files exist
|
|
if not os.path.exists(phrase_models_file):
|
|
print(f"Phrase models file not found: {phrase_models_file}", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
if not os.path.exists(categorized_reviews_file):
|
|
print(f"Categorized reviews file not found: {categorized_reviews_file}", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
# Output path
|
|
output_dir = Path(f"/tmp/databuild_test/examples/podcast_reviews/phrase_stats/category={target_category}/date={target_date}")
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
output_file = output_dir / "phrase_stats.parquet"
|
|
|
|
try:
|
|
# Calculate phrase statistics per podcast
|
|
calculate_phrase_stats_for_category_date(
|
|
phrase_models_file,
|
|
categorized_reviews_file,
|
|
target_category,
|
|
target_date,
|
|
str(output_file)
|
|
)
|
|
|
|
print(f"Successfully calculated phrase stats for category {target_category} on {target_date}")
|
|
print(f"Output written to: {output_file}")
|
|
|
|
# Create manifest
|
|
manifest = {
|
|
"outputs": [{"str": partition_ref}],
|
|
"inputs": [
|
|
{"str": f"phrase_models/category={target_category}/date={target_date}"},
|
|
{"str": f"categorized_reviews/category={target_category}/date={target_date}"}
|
|
],
|
|
"start_time": datetime.now().isoformat(),
|
|
"end_time": datetime.now().isoformat(),
|
|
"task": {
|
|
"job": {"label": "//examples/podcast_reviews:phrase_stats_job"},
|
|
"config": {
|
|
"outputs": [{"str": partition_ref}],
|
|
"inputs": [
|
|
{"dep_type_code": 1, "dep_type_name": "materialize", "partition_ref": {"str": f"phrase_models/category={target_category}/date={target_date}"}},
|
|
{"dep_type_code": 1, "dep_type_name": "materialize", "partition_ref": {"str": f"categorized_reviews/category={target_category}/date={target_date}"}}
|
|
],
|
|
"args": [target_category, target_date],
|
|
"env": {"PARTITION_REF": partition_ref, "TARGET_CATEGORY": target_category, "TARGET_DATE": target_date}
|
|
}
|
|
}
|
|
}
|
|
|
|
manifest_file = output_dir / "manifest.json"
|
|
with open(manifest_file, 'w') as f:
|
|
json.dump(manifest, f, indent=2)
|
|
|
|
except Exception as e:
|
|
print(f"Error calculating phrase stats: {e}", file=sys.stderr)
|
|
sys.exit(1)
|
|
|
|
def calculate_phrase_stats_for_category_date(
|
|
phrase_models_file: str,
|
|
categorized_reviews_file: str,
|
|
target_category: str,
|
|
target_date: str,
|
|
output_file: str
|
|
):
|
|
"""Calculate phrase statistics per podcast by joining phrase models with reviews."""
|
|
|
|
# Connect to DuckDB for processing
|
|
duckdb_conn = duckdb.connect()
|
|
|
|
try:
|
|
# Try to install and load parquet extension, but don't fail if it's already installed
|
|
try:
|
|
duckdb_conn.execute("INSTALL parquet")
|
|
except Exception:
|
|
pass # Extension might already be installed
|
|
|
|
duckdb_conn.execute("LOAD parquet")
|
|
|
|
# Check if we have phrase models
|
|
phrase_count = duckdb_conn.execute(f"SELECT COUNT(*) FROM parquet_scan('{phrase_models_file}')").fetchone()[0]
|
|
|
|
if phrase_count == 0:
|
|
print(f"No phrase models found, creating empty phrase stats")
|
|
create_empty_phrase_stats(target_category, target_date, output_file, duckdb_conn)
|
|
return
|
|
|
|
# Query to calculate phrase statistics per podcast
|
|
query = f"""
|
|
WITH phrase_matches AS (
|
|
SELECT
|
|
r.podcast_id,
|
|
r.podcast_title,
|
|
r.rating,
|
|
r.content,
|
|
p.ngram,
|
|
p.score as phrase_score
|
|
FROM parquet_scan('{categorized_reviews_file}') r
|
|
JOIN parquet_scan('{phrase_models_file}') p
|
|
ON lower(r.content) LIKE '%' || lower(p.ngram) || '%'
|
|
WHERE r.content IS NOT NULL
|
|
AND r.content != ''
|
|
AND p.ngram IS NOT NULL
|
|
AND p.ngram != ''
|
|
),
|
|
podcast_phrase_stats AS (
|
|
SELECT
|
|
'{target_date}' as date,
|
|
'{target_category}' as category,
|
|
podcast_id,
|
|
podcast_title,
|
|
ngram,
|
|
COUNT(*) as count,
|
|
AVG(rating::FLOAT) as avg_rating,
|
|
MIN(rating) as min_rating,
|
|
MAX(rating) as max_rating,
|
|
AVG(phrase_score) as avg_phrase_score,
|
|
COUNT(*) * AVG(phrase_score) * AVG(rating::FLOAT) / 5.0 as weighted_score
|
|
FROM phrase_matches
|
|
GROUP BY podcast_id, podcast_title, ngram
|
|
HAVING COUNT(*) >= 2 -- Only include phrases that appear at least twice per podcast
|
|
)
|
|
SELECT
|
|
date,
|
|
category,
|
|
podcast_id,
|
|
podcast_title,
|
|
ngram,
|
|
count,
|
|
avg_rating,
|
|
min_rating,
|
|
max_rating,
|
|
avg_phrase_score,
|
|
weighted_score
|
|
FROM podcast_phrase_stats
|
|
ORDER BY weighted_score DESC, count DESC
|
|
"""
|
|
|
|
# Execute query and save to parquet
|
|
duckdb_conn.execute(f"COPY ({query}) TO '{output_file}' (FORMAT PARQUET)")
|
|
|
|
# Get row count for logging
|
|
count_result = duckdb_conn.execute(f"SELECT COUNT(*) FROM ({query})").fetchone()
|
|
row_count = count_result[0] if count_result else 0
|
|
|
|
print(f"Calculated phrase statistics for {row_count} podcast-phrase combinations")
|
|
|
|
if row_count == 0:
|
|
print(f"Warning: No phrase matches found for category '{target_category}' on date '{target_date}'")
|
|
create_empty_phrase_stats(target_category, target_date, output_file, duckdb_conn)
|
|
|
|
finally:
|
|
duckdb_conn.close()
|
|
|
|
def create_empty_phrase_stats(category: str, date: str, output_file: str, duckdb_conn):
|
|
"""Create empty phrase stats parquet file with correct schema."""
|
|
|
|
duckdb_conn.execute("DROP TABLE IF EXISTS empty_phrase_stats")
|
|
duckdb_conn.execute("""
|
|
CREATE TABLE empty_phrase_stats (
|
|
date VARCHAR,
|
|
category VARCHAR,
|
|
podcast_id VARCHAR,
|
|
podcast_title VARCHAR,
|
|
ngram VARCHAR,
|
|
count BIGINT,
|
|
avg_rating DOUBLE,
|
|
min_rating INTEGER,
|
|
max_rating INTEGER,
|
|
avg_phrase_score DOUBLE,
|
|
weighted_score DOUBLE
|
|
)
|
|
""")
|
|
|
|
duckdb_conn.execute(f"COPY empty_phrase_stats TO '{output_file}' (FORMAT PARQUET)")
|
|
print("Created empty phrase stats file")
|
|
|
|
if __name__ == "__main__":
|
|
main() |