7.1 KiB
7.1 KiB
App Specification
AKA the different ways databuild applications can be described.
Correctness Strategy
- Examples implemented that use each graph specification strategy, and are tested in CI/CD.
- Graph specification strategies provide
Bazel
- Purpose: compilation/build target that fulfills promise of project (like bytecode for JVM langs)
- Job binaries (config and exec)
- Graph lookup binary (lookup)
- Job target (config and exec)
- Graph target (build and analyze)
- See core build for details
Python
- Wrapper functions enable graph registry
- Partition object increases ergonomics and enables explicit data coupling
from dataclasses import dataclass
from databuild import (
DataBuildGraph, DataBuildJob, Partition, JobConfig, PyJobConfig, BazelJobConfig, PartitionManifest, Want
)
from helpers import ingest_reviews, categorize_reviews, sla_failure_notify
from datetime import datetime, timedelta
graph = DataBuildGraph("//:podcast_reviews_graph")
ALL_CATEGORIES = {"comedy", ...}
# Partition definitions, used by the graph to resolve jobs by introspecting their config signatures
ExtractedReviews = Partition[r"reviews/date=(?P<date>\d{4}-\d{2}-\d{2})"]
CategorizedReviews = Partition[r"categorized_reviews/category=(?P<category>[^/]+)/date=(?P<date>\d{4}-\d{2}-\d{2})"]
PhraseModel = Partition[r"phrase_models/category=(?P<category>[^/]+)/date=(?P<date>\d{4}-\d{2}-\d{2})"]
PhraseStats = Partition[r"phrase_stats/category=(?P<category>[^/]+)/date=(?P<date>\d{4}-\d{2}-\d{2})"]
@graph.job
class ExtractReviews(DataBuildJob):
def config(self, outputs: list[ExtractedReviews]) -> list[JobConfig]:
# One job run can output multiple partitions
args = [p.date for p in outputs]
return [JobConfig(outputs=outputs, inputs=[], args=args,)]
def exec(self, config: JobConfig) -> PartitionManifest:
for (date, output) in zip(config.args, config.outputs):
ingest_reviews(date).write(output)
# Start and end time inferred by wrapper (but could be overridden)
return config.partitionManifest(job=self)
@dataclass
class CategorizeReviewsArgs:
date: str
category: str
@graph.job
class CategorizeReviews(DataBuildJob):
def config(self, outputs: list[CategorizedReviews]) -> list[JobConfig]:
# This job only outputs one partition per run
return [
# The PyJobConfig allows you to pass objects in config, rather than just `args` and `env`
PyJobConfig[CategorizeReviewsArgs](
outputs=[p],
inputs=ExtractedReviews.dep.materialize(date=p.date),
params=CategorizeReviewsArgs(date=p.date, category=p.category),
)
for p in outputs
]
def exec(self, config: PyJobConfig[CategorizeReviewsArgs]) -> None:
categorize_reviews(config.params.date, config.params.category)
# Partition manifest automatically constructed from config
@graph.job
class PhraseModeling(DataBuildJob):
def config(self, outputs: list[PhraseModel]) -> list[JobConfig]:
# This job relies on a bazel executable target to run the actual job
return [
BazelJobConfig(
outputs=[p],
inputs=[CategorizedReviews.dep.materialize(date=p.date, category=p.category)],
exec_target="//jobs:phrase_modeling",
env={"CATEGORY": p.category, "DATA_DATE": p.date},
)
for p in outputs
]
# This job is fully defined in bazel
graph.bazel_job(target="//jobs:phrase_stats_job", outputs=list[PhraseStats])
@graph.want(cron='0 0 * * *')
def phrase_stats_want() -> list[Want[PhraseStats]]:
# Crates a new want every midnight that times out in 3 days
wanted = [PhraseStats(date=datetime.now().date().isoformat(), category=cat) for cat in ALL_CATEGORIES]
on_fail = lambda p: f"Failed to calculate partition `{p}`"
return [graph.want(partitions=wanted, ttl=timedelta(days=3), on_fail=on_fail)]
- TODO - do we need an escape hatch for "after 2025 use this job, before use that job" functionality?
Rust?
Scala?
import databuild._
import scala.concurrent.duration._
import java.time.LocalDate
object PodcastReviewsGraph extends DataBuildGraph("//:podcast_reviews_graph") {
val AllCategories = Set("comedy", ???)
case class DatePartition(date: String)
case class CategoryDatePartition(category: String, date: String)
// Partition definitions using extractors
object ExtractedReviews extends Partition[DatePartition](
"""reviews/date=(?P<date>\d{4}-\d{2}-\d{2})""".r
)
object CategorizedReviews extends Partition[CategoryDatePartition](
"""categorized_reviews/category=(?P<category>[^/]+)/date=(?P<date>\d{4}-\d{2}-\d{2})""".r
)
object PhraseModel extends Partition[CategoryDatePartition](
"""phrase_models/category=(?P<category>[^/]+)/date=(?P<date>\d{4}-\d{2}-\d{2})""".r
)
object PhraseStats extends Partition[CategoryDatePartition](
"""phrase_stats/category=(?P<category>[^/]+)/date=(?P<date>\d{4}-\d{2}-\d{2})""".r
)
// Job definitions
@job
object ExtractReviewsJob extends DataBuildJob[ExtractedReviews] {
def config(outputs: List[ExtractedReviews]): List[JobConfig] = {
val args = outputs.map(_.date)
List(JobConfig(
outputs = outputs,
inputs = Nil,
args = args
))
}
def exec(config: JobConfig): PartitionManifest = {
config.args.zip(config.outputs).foreach { case (date, output) =>
ingestReviews(date).writeTo(output)
}
config.toPartitionManifest(this)
}
}
@job
object CategorizeReviewsJob extends DataBuildJob[CategorizedReviews] {
case class Args(date: String, category: String)
def config(outputs: List[CategorizedReviews]): List[JobConfig] = {
outputs.map { p =>
ScalaJobConfig[Args](
outputs = List(p),
inputs = ExtractedReviews.dep.materialize(date = p.date),
params = Args(p.date, p.category)
)
}
}
def exec(config: ScalaJobConfig[Args]): Unit = {
categorizeReviews(config.params.date, config.params.category)
// Partition manifest auto-constructed
}
}
@job
object PhraseModelingJob extends DataBuildJob[PhraseModel] {
def config(outputs: List[PhraseModel]): List[JobConfig] = {
outputs.map { p =>
BazelJobConfig(
outputs = List(p),
inputs = List(CategorizedReviews.dep.materialize(
category = p.category,
date = p.date
)),
execTarget = "//jobs:phrase_modeling",
env = Map("CATEGORY" -> p.category, "DATA_DATE" -> p.date)
)
}
}
}
// External bazel job
bazelJob("//jobs:phrase_stats_job", outputType = classOf[PhraseStats])
// Want definition
@want(cron = "0 0 * * *")
def phraseStatsWant(): List[Want[PhraseStats]] = {
val today = LocalDate.now().toString
val wanted = AllCategories.map(cat => PhraseStats(cat, today)).toList
List(want(
partitions = wanted,
ttl = 3.days,
onFail = p => s"Failed to calculate partition `$p`"
))
}
}