Add test for asserting measured cpu

This commit is contained in:
Stuart Axelbrooke 2025-07-28 19:18:42 -07:00
parent 41ea8f129c
commit 7fd8b0a0d5
2 changed files with 361 additions and 199 deletions

View file

@ -22,5 +22,6 @@ rust_test(
"@crates//:serde_json",
"@crates//:uuid",
"@crates//:sysinfo",
"@crates//:tempfile",
],
)

View file

@ -2,29 +2,56 @@ use std::env;
use std::io::{self, Read, Write};
use std::process::{Command, Stdio};
use std::sync::{Arc, Mutex};
use std::time::{SystemTime, UNIX_EPOCH, Duration};
use std::thread;
use std::time::{Duration, SystemTime, UNIX_EPOCH};
// All serialization handled by protobuf serde derives
use serde_json;
use sysinfo::{Pid, ProcessRefreshKind, System};
use uuid::Uuid;
use sysinfo::{System, ProcessRefreshKind, Pid};
// Import protobuf types from databuild
use databuild::{
PartitionRef, PartitionManifest, Task, JobLabel, JobConfig,
JobLogEntry, LogMessage, WrapperJobEvent, job_log_entry, log_message
job_log_entry, log_message, JobConfig, JobLabel, JobLogEntry, LogMessage, PartitionManifest,
PartitionRef, Task, WrapperJobEvent,
};
// All types now come from protobuf - no custom structs needed
struct JobWrapper {
fn get_timestamp() -> String {
SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
.to_string()
}
trait LogSink {
fn emit(&mut self, entry: JobLogEntry);
}
struct StdoutSink;
impl LogSink for StdoutSink {
fn emit(&mut self, entry: JobLogEntry) {
println!("{}", serde_json::to_string(&entry).unwrap());
}
}
struct JobWrapper<S: LogSink> {
job_id: String,
sequence_number: u64,
start_time: i64,
sink: S,
}
impl JobWrapper {
impl JobWrapper<StdoutSink> {
fn new() -> Self {
Self::new_with_sink(StdoutSink)
}
}
impl<S: LogSink> JobWrapper<S> {
fn new_with_sink(sink: S) -> Self {
Self {
job_id: Uuid::new_v4().to_string(),
sequence_number: 0,
@ -32,17 +59,10 @@ impl JobWrapper {
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs() as i64,
sink,
}
}
fn get_timestamp() -> String {
SystemTime::now()
.duration_since(UNIX_EPOCH)
.unwrap()
.as_secs()
.to_string()
}
fn next_sequence(&mut self) -> u64 {
self.sequence_number += 1;
self.sequence_number
@ -50,14 +70,14 @@ impl JobWrapper {
fn emit_log(&mut self, partition_ref: &str, content: job_log_entry::Content) {
let entry = JobLogEntry {
timestamp: Self::get_timestamp(),
timestamp: get_timestamp(),
job_id: self.job_id.clone(),
partition_ref: partition_ref.to_string(),
sequence_number: self.next_sequence(),
content: Some(content),
};
println!("{}", serde_json::to_string(&entry).unwrap());
self.sink.emit(entry);
}
fn config_mode(&mut self, outputs: Vec<String>) -> Result<(), Box<dyn std::error::Error>> {
@ -65,17 +85,23 @@ impl JobWrapper {
let partition_ref = outputs.first().unwrap_or(&"unknown".to_string()).clone();
// Following the state diagram: wrapper_validate_config -> emit_config_validate_success
self.emit_log(&partition_ref, job_log_entry::Content::JobEvent(WrapperJobEvent {
self.emit_log(
&partition_ref,
job_log_entry::Content::JobEvent(WrapperJobEvent {
event_type: "config_validate_success".to_string(),
metadata: std::collections::HashMap::new(),
job_status: None,
exit_code: None,
}));
}),
);
// For Phase 0, we still need to produce the expected JSON config format
// so the current graph system can parse it. Later phases will change this.
let config = JobConfig {
outputs: outputs.iter().map(|s| PartitionRef { r#str: s.clone() }).collect(),
outputs: outputs
.iter()
.map(|s| PartitionRef { r#str: s.clone() })
.collect(),
inputs: vec![],
args: outputs.clone(),
env: {
@ -104,26 +130,42 @@ impl JobWrapper {
io::stdin().read_to_string(&mut buffer)?;
let config: JobConfig = serde_json::from_str(&buffer)?;
let partition_ref = config.outputs.first()
self.exec_mode_with_config(job_binary, config)
}
fn exec_mode_with_config(
&mut self,
job_binary: &str,
config: JobConfig,
) -> Result<(), Box<dyn std::error::Error>> {
let partition_ref = config
.outputs
.first()
.map(|p| p.str.clone())
.unwrap_or_else(|| "unknown".to_string());
// Following the state diagram:
// 1. wrapper_validate_config -> emit_config_validate_success
self.emit_log(&partition_ref, job_log_entry::Content::JobEvent(WrapperJobEvent {
self.emit_log(
&partition_ref,
job_log_entry::Content::JobEvent(WrapperJobEvent {
event_type: "config_validate_success".to_string(),
job_status: None,
exit_code: None,
metadata: std::collections::HashMap::new(),
}));
}),
);
// 2. wrapper_launch_task -> emit_task_launch_success
self.emit_log(&partition_ref, job_log_entry::Content::JobEvent(WrapperJobEvent {
self.emit_log(
&partition_ref,
job_log_entry::Content::JobEvent(WrapperJobEvent {
event_type: "task_launch_success".to_string(),
job_status: None,
exit_code: None,
metadata: std::collections::HashMap::new(),
}));
}),
);
// Execute the original job binary with the exec subcommand
let mut cmd = Command::new(job_binary);
@ -148,7 +190,7 @@ impl JobWrapper {
// Send the config to the job
if let Some(stdin) = child.stdin.as_mut() {
stdin.write_all(buffer.as_bytes())?;
stdin.write_all(serde_json::to_string(&config).unwrap().as_bytes())?;
}
// Start heartbeat thread
@ -175,7 +217,10 @@ impl JobWrapper {
// Create heartbeat event with metrics
let mut metadata = std::collections::HashMap::new();
metadata.insert("memory_usage_mb".to_string(), format!("{:.3}", memory_mb));
metadata.insert("cpu_usage_percent".to_string(), format!("{:.3}", cpu_percent));
metadata.insert(
"cpu_usage_percent".to_string(),
format!("{:.3}", cpu_percent),
);
// Get next sequence number for heartbeat
let seq = {
@ -185,7 +230,7 @@ impl JobWrapper {
};
let heartbeat_event = JobLogEntry {
timestamp: JobWrapper::get_timestamp(),
timestamp: get_timestamp(),
job_id: heartbeat_job_id.clone(),
partition_ref: heartbeat_partition_ref.clone(),
sequence_number: seq,
@ -230,14 +275,19 @@ impl JobWrapper {
}
// Calculate final metrics
let job_duration = job_start_time.elapsed()
.map_err(|e| io::Error::new(io::ErrorKind::Other, format!("Time calculation error: {}", e)))?;
let job_duration = job_start_time.elapsed().map_err(|e| {
io::Error::new(
io::ErrorKind::Other,
format!("Time calculation error: {}", e),
)
})?;
// Calculate CPU time: average CPU percentage * wall-clock time
let total_cpu_ms = if cpu_samples.is_empty() {
0.0
} else {
let avg_cpu_percent = cpu_samples.iter().sum::<f32>() as f64 / cpu_samples.len() as f64;
let avg_cpu_percent =
cpu_samples.iter().sum::<f32>() as f64 / cpu_samples.len() as f64;
(avg_cpu_percent / 100.0) * job_duration.as_millis() as f64
};
@ -283,44 +333,62 @@ impl JobWrapper {
// Capture and forward job stdout/stderr as log messages
if !output.stdout.is_empty() {
let stdout_str = String::from_utf8_lossy(&output.stdout);
self.emit_log(&partition_ref, job_log_entry::Content::Log(LogMessage {
self.emit_log(
&partition_ref,
job_log_entry::Content::Log(LogMessage {
level: log_message::LogLevel::Info as i32,
message: stdout_str.to_string(),
fields: std::collections::HashMap::new(),
}));
}),
);
}
if !output.stderr.is_empty() {
let stderr_str = String::from_utf8_lossy(&output.stderr);
self.emit_log(&partition_ref, job_log_entry::Content::Log(LogMessage {
self.emit_log(
&partition_ref,
job_log_entry::Content::Log(LogMessage {
level: log_message::LogLevel::Error as i32,
message: stderr_str.to_string(),
fields: std::collections::HashMap::new(),
}));
}),
);
}
// Emit job summary with resource metrics
let mut summary_metadata = std::collections::HashMap::new();
summary_metadata.insert("runtime_ms".to_string(), format!("{:.3}", job_duration.as_millis() as f64));
summary_metadata.insert("peak_memory_mb".to_string(), format!("{:.3}", peak_memory_mb));
summary_metadata.insert(
"runtime_ms".to_string(),
format!("{:.3}", job_duration.as_millis() as f64),
);
summary_metadata.insert(
"peak_memory_mb".to_string(),
format!("{:.3}", peak_memory_mb),
);
summary_metadata.insert("total_cpu_ms".to_string(), format!("{:.3}", total_cpu_ms));
summary_metadata.insert("exit_code".to_string(), exit_code.to_string());
self.emit_log(&partition_ref, job_log_entry::Content::JobEvent(WrapperJobEvent {
self.emit_log(
&partition_ref,
job_log_entry::Content::JobEvent(WrapperJobEvent {
event_type: "job_summary".to_string(),
job_status: None,
exit_code: Some(exit_code),
metadata: summary_metadata,
}));
}),
);
if success {
// Following the state diagram: wrapper_monitor_task -> zero exit -> emit_task_success
self.emit_log(&partition_ref, job_log_entry::Content::JobEvent(WrapperJobEvent {
self.emit_log(
&partition_ref,
job_log_entry::Content::JobEvent(WrapperJobEvent {
event_type: "task_success".to_string(),
job_status: Some("JOB_COMPLETED".to_string()),
exit_code: Some(exit_code),
metadata: std::collections::HashMap::new(),
}));
}),
);
// Then emit_partition_manifest -> success
let end_time = SystemTime::now()
@ -328,39 +396,52 @@ impl JobWrapper {
.unwrap()
.as_secs() as i64;
self.emit_log(&partition_ref, job_log_entry::Content::Manifest(PartitionManifest {
self.emit_log(
&partition_ref,
job_log_entry::Content::Manifest(PartitionManifest {
outputs: config.outputs.clone(),
inputs: vec![], // Phase 0: no input manifests yet
start_time: self.start_time,
end_time,
task: Some(Task {
job: Some(JobLabel {
label: env::var("DATABUILD_JOB_LABEL").unwrap_or_else(|_| "unknown".to_string()),
label: env::var("DATABUILD_JOB_LABEL")
.unwrap_or_else(|_| "unknown".to_string()),
}),
config: Some(config.clone()),
}),
metadata: std::collections::HashMap::new(), // Phase 0: no metadata yet
}));
}),
);
} else {
// Following the state diagram: wrapper_monitor_task -> non-zero exit -> emit_task_failed
self.emit_log(&partition_ref, job_log_entry::Content::JobEvent(WrapperJobEvent {
self.emit_log(
&partition_ref,
job_log_entry::Content::JobEvent(WrapperJobEvent {
event_type: "task_failed".to_string(),
job_status: Some("JOB_FAILED".to_string()),
exit_code: Some(exit_code),
metadata: std::collections::HashMap::new(),
}));
}),
);
// Then emit_job_exec_fail -> fail (don't emit partition manifest on failure)
self.emit_log(&partition_ref, job_log_entry::Content::JobEvent(WrapperJobEvent {
self.emit_log(
&partition_ref,
job_log_entry::Content::JobEvent(WrapperJobEvent {
event_type: "job_exec_fail".to_string(),
job_status: Some("JOB_FAILED".to_string()),
exit_code: Some(exit_code),
metadata: {
let mut meta = std::collections::HashMap::new();
meta.insert("error".to_string(), format!("Job failed with exit code {}", exit_code));
meta.insert(
"error".to_string(),
format!("Job failed with exit code {}", exit_code),
);
meta
},
}));
}),
);
}
// Forward the original job's output to stdout for compatibility
@ -394,8 +475,8 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
"exec" => {
// For exec mode, we need to know which original job binary to call
// For Phase 0, we'll derive this from environment or make it configurable
let job_binary = env::var("DATABUILD_JOB_BINARY")
.unwrap_or_else(|_| "python3".to_string()); // Default fallback
let job_binary =
env::var("DATABUILD_JOB_BINARY").unwrap_or_else(|_| "python3".to_string()); // Default fallback
wrapper.exec_mode(&job_binary)?;
}
@ -412,10 +493,42 @@ fn main() -> Result<(), Box<dyn std::error::Error>> {
mod tests {
use super::*;
// Test infrastructure
struct TestSink {
entries: Vec<JobLogEntry>,
}
impl TestSink {
fn new() -> Self {
Self {
entries: Vec::new(),
}
}
fn find_event(&self, event_type: &str) -> Option<&JobLogEntry> {
self.entries.iter().find(|entry| {
if let Some(job_log_entry::Content::JobEvent(event)) = &entry.content {
event.event_type == event_type
} else {
false
}
})
}
}
impl LogSink for TestSink {
fn emit(&mut self, entry: JobLogEntry) {
self.entries.push(entry);
}
}
// Helper functions for testing
fn generate_test_config(outputs: &[String]) -> JobConfig {
JobConfig {
outputs: outputs.iter().map(|s| PartitionRef { r#str: s.clone() }).collect(),
outputs: outputs
.iter()
.map(|s| PartitionRef { r#str: s.clone() })
.collect(),
inputs: vec![],
args: outputs.to_vec(),
env: {
@ -466,7 +579,10 @@ mod tests {
assert_eq!(config.outputs.len(), 1);
assert_eq!(config.outputs[0].r#str, "test/partition");
assert_eq!(config.args, outputs);
assert_eq!(config.env.get("PARTITION_REF"), Some(&"test/partition".to_string()));
assert_eq!(
config.env.get("PARTITION_REF"),
Some(&"test/partition".to_string())
);
}
#[test]
@ -481,7 +597,10 @@ mod tests {
assert_eq!(config.outputs[0].r#str, "reviews/date=2025-01-01");
assert_eq!(config.outputs[1].r#str, "reviews/date=2025-01-02");
// First output is used as PARTITION_REF
assert_eq!(config.env.get("PARTITION_REF"), Some(&"reviews/date=2025-01-01".to_string()));
assert_eq!(
config.env.get("PARTITION_REF"),
Some(&"reviews/date=2025-01-01".to_string())
);
}
#[test]
@ -551,9 +670,9 @@ mod tests {
#[test]
fn test_timestamp_generation() {
let ts1 = JobWrapper::get_timestamp();
let ts1 = get_timestamp();
std::thread::sleep(std::time::Duration::from_millis(10));
let ts2 = JobWrapper::get_timestamp();
let ts2 = get_timestamp();
// Timestamps should be parseable as integers
let t1: u64 = ts1.parse().expect("Should be valid timestamp");
@ -573,75 +692,117 @@ mod tests {
#[test]
fn test_cpu_metrics_are_captured() {
use std::process::{Command, Stdio};
use std::io::Write;
use std::process::{Command, Stdio};
use tempfile::NamedTempFile;
// Set faster sampling interval for test
env::set_var("DATABUILD_METRICS_INTERVAL_MS", "10");
// Create a CPU-intensive Python script
let cpu_script = r#"
// Create a CPU-intensive test script
let mut temp_file = NamedTempFile::new().expect("Failed to create temp file");
let script_content = r#"#!/usr/bin/env python3
import sys
import json
if len(sys.argv) > 1 and sys.argv[1] == "config":
print('{"configs":[{"outputs":[{"str":"test/cpu"}],"inputs":[],"args":[],"env":{}}]}')
config = {
"outputs": [{"str": "test/cpu"}],
"inputs": [],
"args": [],
"env": {"PARTITION_REF": "test/cpu"}
}
print(json.dumps({"configs": [config]}))
elif len(sys.argv) > 1 and sys.argv[1] == "exec":
# CPU-intensive work
total = sum(range(10_000_000))
total = sum(range(50_000_000)) # Smaller for faster test
print(f"Sum: {total}")
"#;
let script_path = "/tmp/databuild_test_cpu.py";
std::fs::write(script_path, cpu_script).expect("Failed to write test script");
temp_file
.write_all(script_content.as_bytes())
.expect("Failed to write script");
let script_path = temp_file.path().to_str().unwrap();
// Run wrapper with the CPU-intensive job
env::set_var("DATABUILD_JOB_BINARY", "python3");
// Make script executable
std::fs::set_permissions(
script_path,
std::os::unix::fs::PermissionsExt::from_mode(0o755),
)
.expect("Failed to set permissions");
let output = Command::new(env!("CARGO_BIN_EXE_job_wrapper"))
.arg("exec")
.stdin(Stdio::piped())
.stdout(Stdio::piped())
.stderr(Stdio::piped())
.spawn()
.and_then(|mut child| {
// Send config to stdin
// Set up environment for fast sampling and the test script
env::set_var("DATABUILD_METRICS_INTERVAL_MS", "10");
env::set_var("DATABUILD_JOB_BINARY", script_path);
// Create test sink and wrapper
let sink = TestSink::new();
let mut wrapper = JobWrapper::new_with_sink(sink);
// Create a JobConfig for the test
let config = JobConfig {
outputs: vec![PartitionRef { r#str: "test/cpu".to_string() }],
outputs: vec![PartitionRef {
r#str: "test/cpu".to_string(),
}],
inputs: vec![],
args: vec![script_path.to_string()],
env: std::collections::HashMap::new(),
args: vec![],
env: {
let mut env_map = std::collections::HashMap::new();
env_map.insert("PARTITION_REF".to_string(), "test/cpu".to_string());
env_map
},
};
let config_json = serde_json::to_string(&config).unwrap();
if let Some(stdin) = child.stdin.as_mut() {
stdin.write_all(config_json.as_bytes()).unwrap();
}
// We need to simulate stdin for exec_mode - let's create a test-specific exec method
// that takes the config directly rather than reading from stdin
let result = wrapper.exec_mode_with_config(script_path, config);
child.wait_with_output()
})
.expect("Failed to run wrapper");
// Parse output to find job_summary
let stdout = String::from_utf8_lossy(&output.stdout);
let mut cpu_ms = None;
for line in stdout.lines() {
if let Ok(json) = serde_json::from_str::<serde_json::Value>(line) {
if json["content"]["JobEvent"]["event_type"] == "job_summary" {
if let Some(cpu_str) = json["content"]["JobEvent"]["metadata"]["total_cpu_ms"].as_str() {
cpu_ms = Some(cpu_str.parse::<f64>().unwrap());
}
}
}
}
// Clean up
std::fs::remove_file(script_path).ok();
// Clean up environment
env::remove_var("DATABUILD_METRICS_INTERVAL_MS");
env::remove_var("DATABUILD_JOB_BINARY");
// Assert we captured non-zero CPU time
assert!(cpu_ms.is_some(), "Should have found job_summary event");
let cpu_time = cpu_ms.unwrap();
assert!(cpu_time > 0.0,
"Expected non-zero CPU time for CPU-intensive workload, but got {:.3}ms", cpu_time);
// Check that exec_mode succeeded
if let Err(e) = &result {
println!("exec_mode failed with error: {}", e);
}
assert!(result.is_ok(), "exec_mode should succeed: {:?}", result);
// Find the job_summary event
let summary_event = wrapper
.sink
.find_event("job_summary")
.expect("Should have job_summary event");
if let Some(job_log_entry::Content::JobEvent(event)) = &summary_event.content {
// Verify we have CPU metrics
let cpu_ms_str = event
.metadata
.get("total_cpu_ms")
.expect("Should have total_cpu_ms metric");
let cpu_ms: f64 = cpu_ms_str
.parse()
.expect("CPU metric should be valid float");
// For CPU-intensive work, we should get non-zero CPU time
assert!(
cpu_ms > 0.0,
"Expected non-zero CPU time for CPU-intensive workload, but got {:.3}ms",
cpu_ms
);
// Also verify runtime is reasonable
let runtime_ms_str = event
.metadata
.get("runtime_ms")
.expect("Should have runtime_ms metric");
let runtime_ms: f64 = runtime_ms_str
.parse()
.expect("Runtime metric should be valid float");
assert!(runtime_ms > 0.0, "Should have non-zero runtime");
println!(
"CPU test results: {:.3}ms CPU time over {:.3}ms runtime",
cpu_ms, runtime_ms
);
} else {
panic!("job_summary event should contain JobEvent");
}
}
}